An extended random-effects approach to modeling repeated, overdispersed count data.
نویسندگان
چکیده
Non-Gaussian outcomes are often modeled using members of the so-called exponential family. The Poisson model for count data falls within this tradition. The family in general, and the Poisson model in particular, are at the same time convenient since mathematically elegant, but in need of extension since often somewhat restrictive. Two of the main rationales for existing extensions are (1) the occurrence of overdispersion, in the sense that the variability in the data is not adequately captured by the model's prescribed mean-variance link, and (2) the accommodation of data hierarchies owing to, for example, repeatedly measuring the outcome on the same subject, recording information from various members of the same family, etc. There is a variety of overdispersion models for count data, such as, for example, the negative-binomial model. Hierarchies are often accommodated through the inclusion of subject-specific, random effects. Though not always, one conventionally assumes such random effects to be normally distributed. While both of these issues may occur simultaneously, models accommodating them at once are less than common. This paper proposes a generalized linear model, accommodating overdispersion and clustering through two separate sets of random effects, of gamma and normal type, respectively. This is in line with the proposal by Booth et al. (Stat Model 3:179-181, 2003). The model extends both classical overdispersion models for count data (Breslow, Appl Stat 33:38-44, 1984), in particular the negative binomial model, as well as the generalized linear mixed model (Breslow and Clayton, J Am Stat Assoc 88:9-25, 1993). Apart from model formulation, we briefly discuss several estimation options, and then settle for maximum likelihood estimation with both fully analytic integration as well as hybrid between analytic and numerical integration. The latter is implemented in the SAS procedure NLMIXED. The methodology is applied to data from a study in epileptic seizures.
منابع مشابه
Beta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملEstimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملRandom effect models for repeated measures of zero-inflated count data
For count responses, the situation of excess zeros (relative to what standard models allow) often occurs in biomedical and sociological applications. Modeling repeated measures of zero-inflated count data presents special challenges. This is because in addition to the problem of extra zeros, the correlation between measurements upon the same subject at different occasions needs to be taken into...
متن کاملA framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution
A variety of methods of modelling overdispersed count data are compared. The methods are classified into threemain categories. The first category are ad hoc methods (i.e. pseudolikelihood, (extended) quasi-likelihood, double exponential family distributions). The second category are discretized continuous distributions and the third category are observational level random effects models (i.e. m...
متن کاملA Marginalized Combined Gamma Frailty and Normal Random-effects Model for Repeated, Overdispersed Time-to-event Outcomes
This paper proposes a marginalized model for repeated or otherwise hierarchical, overdispersed time-to-event outcomes, adapting the so-called combined model for time-to-event outcomes of Molenberghs et al (2012), who combined gamma and normal random effects. The two sets of random effects are used to accommodate simultaneously correlation between repeated measures and overdispersion. The propos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lifetime data analysis
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2007